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Project Motivation

Current Issues

 Complex transport phenomena with 

multiple process variables

 Difficulty in understanding the dynamic 

evolution of multiphase flow and 

inclusions

Potential Impacts

 Process design of optimized flow 

condition and physical properties 

 Steel cleanliness improvement and 

final defects reduction
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Project Objectives

4

 Years 1 & 2:

 Develop a model for fluid flow and mixing in a steel ladle

 Study effect of gas flow rates and ladle designs on mixing efficiency

 Develop correlation between geometry parameters and mixing time

 Develop correlation between fluid flow and slag physical properties

 Year 3:

 Develop a comprehensive multiphase reacting CFD model of a steel 

ladle using two stirring conditions

• Gas stirring condition

• Electromagnetic stirring (EMS) condition

 Study inclusion transport and evolution

• Consider bubble interaction with inclusion, floatation removal 

mechanism

 Long Term:

 Develop a model of inclusion generation through chemical reaction

 Implement inclusion model in electromagnetic stirring condition
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CFD Model Roadmap
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Ladle Sub-Projects

Sub-Projects 2016 2017 2018 2019 2020

1 Isothermal gas-stirring ladle model

2 Heat transfer model

3 Gas-stirred isothermal inclusion removal

4 EMS isothermal inclusion removal

5 Ladle chemical reaction

6 Heat transfer effect on inclusion removal
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Outcomes – Model Advancement

7

 CFD models of gas-stirred ladle developed based on Nucor 

Steel Decatur ladle

 CFD model of Isothermal gas-stirred flow models:

 Bubble coalescence and breakup were developed

 CFD predictions validated against experimental work percentage error 

within 11% and industrial measurements percentage error within 8%

 CFD model of inclusion growth and removal models:

 Three mechanisms of inclusion growth and six mechanisms of 

inclusion removal were added into the model

 Bubble coalescence and breakup model was combined in order 

to calculate inclusion-bubble interaction

 EMS Ladle 

 Import magnetic field, multiphase EMS simulation
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Project Outcomes (Year 1 & 2)

 Sub-Project 1 : Isothermal Gas-stirring Ladle Model (completed)

 Argon flow rate ↑

• Slag eye size ↑, wall shear stress ↑, mixing time ↓

• Bubble breakup frequency ↑, bubble coalescence frequency ↓

• Slag thickness ↓, slag density ↑

 All bubbles reach equilibrium diameters as time elapse

 Plug distance ratio ↑

• Mixing efficiency ↑

• Mixing efficiency is better at separation angle of 60o

 Aspect ratio ↑

• Mixing efficiency ↑

 Sub-Project 2 : Heat Transfer Model (completed)

 Effect of initial wall temperature – temperature stratification decrease 

faster with higher wall initial temperature 
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Project Outcomes (Year 3)

 Sub-Project 3 – Gas-Stirred Isothermal Inclusion Growth and 

Removal (in progress)

 Model Advancement 

• Three mechanisms of inclusion growth

• Six mechanisms of inclusion removal 

• Validate flow with industry measurements, and inclusion removal 

model with literature results.

 Research findings

• For 90 separation angle ladle, argon flow rate ↑, dead zone area ↓, 

wall shear stress ↑, slag eye ↑.      

 Sub-Project 4 – EMS Isothermal Inclusion Growth and Removal 

(in progress)

 Model Advancement

• Develop external magnetic field

• Develop single phase EMS model and validate magnetic field with 

literature results

• Develop a working multiphase EMS model with included slag layer.



centers.pnw.edu/civs civs@pnw.edu 10

Timeline for 2018
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State of the Art

 Gas-stirred ladle - flow field, slag eye or effect of ladle design on the 

mixing efficiency [1-3].

 Comparison of induction stirring (EMS) with gas stirred ladle and 

combined gas/EMS [4].

 Inclusion behavior modeled by 4 main methods.

 Static numerical models of nucleation, growth and removal of 

inclusions [5-7]. No consideration of inclusion transport.

 CFD-based trajectory method [8-10]. No consideration of inclusion 

collision and agglomeration. 

 CFD-based characteristic inclusion parameters [11-13]. Inclusion 

distribution is simplified with exponential function with inclusion 

radius.

 CFD-PBM coupled model [14-16]. Inclusion divided into multiple 

groups size. Assumptions of flat free surface without slag and 

constant bubble size. Predefined initial inclusion distribution.
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GAS-STIRRED LADLE MODEL
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Methodology & CFD Models

Gas-stirring ladle model

 Fluid zones (slag, melt, inclusion and air)

– Multiphase flow: Eulerian-Eulerian

– Turbulent model: Realizable k-epsilon

 Argon injection

– Discrete phase model (DPM)

Inclusion removal and growth model

 Inclusion transport

– Population balance model (PBM) – continuum method

 Inclusion removal and growth

– Removal from bubble, slag and wall

1) Import quasi-steady velocity (𝑢𝑥,𝑦,𝑧), volume fraction 

(𝛼𝑝ℎ𝑎𝑠𝑒), turbulence 𝑘 & 𝜀 (for slag, steel and air)

2) Apply steel 𝑢𝑥,𝑦,𝑧, 𝑘 & 𝜀 into inclusion phase

Liquid 

steel

Slag

Argon injection
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Inclusion Growth & Removal Model

14

 Lou, Wentao, and M. Zhu. "Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles." Metallurgical & Materials 

Transactions B Process Metallurgy & Materials Processing Science 44.3(2013):762-782.

 Cao, Qing, and L. Nastac. "Numerical modelling of the transport and removal of inclusions in an industrial gas-stirred ladle.".

Mechanisms for inclusion growth and removal

Bubble

Wall

Slag
Inclusion removal

 Buoyancy collision

 Turbulent random collision

 Turbulent shear collision

 Bubble wake capture

 Inclusions flow motion and flotation.

 Inclusion attachment to refractory

Inclusion growth

 Turbulent random collision

 Turbulent shear collision

 Stokes buoyancy collision
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Inclusion Growth Model

 Overall inclusion growth rate

𝛽𝑖𝑗 = 𝛽𝑖𝑗
𝑇𝑆 + 𝛽𝑖𝑗

𝑇𝑅 + 𝛽𝑖𝑗
𝑆

 𝛽𝑖𝑗
𝑇𝑅 = Turbulence random collision

 𝛽𝑖𝑗
𝑇𝑆 = Turbulence shear collision 

 𝛽𝑖𝑗
𝑆 = Stokes buoyancy collision 

 Inclusion growth due to turbulence random collision (Lou et al., 2013)

 For 𝑑1 = min 𝑑𝑖 , 𝑑𝑗 ≤ η ≤ max 𝑑𝑖 , 𝑑𝑗 = 𝑑2

 For  𝑑1 > η

 For  𝑑2 < η

η: Kolmogorov microscale (size of 

smallest eddies in turbulence, m) 

𝜀: Turbulent dissipation rate(m2/s3)

𝑣: kinematic viscosity(m2/s)

 W. T. Lou, and M. Y. Zhu. "Numerical simulations of inclusion behavior in gas-stirred ladles." Metallurgical and Materials 

Transactions B 44.3 (2013): 762-782.
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Inclusion Growth Model

 Inclusion growth rate due to turbulence shear collision 

(𝑑𝑖 , 𝑑𝑗 < η)

 Inclusion growth due to stokes buoyancy collision 

: capture efficiency;

𝐸 𝑠

𝑝−𝑝
: buoyancy collision efficiency (collision probability)

 W. T. Lou, and M. Y. Zhu. "Numerical simulations of inclusion behavior in gas-stirred ladles." Metallurgical and Materials 

Transactions B 44.3 (2013): 762-782.
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Inclusion Removal by Wall & Slag

 Inclusion removal due to wall adhesion  

through diffusion process 

𝑆𝑖
𝑊 =

0.0062𝜀
3
4

𝑣
5
4

𝐴𝑠

𝑉𝑐𝑒𝑙𝑙
𝑟𝑖
2𝑛(𝑉𝑖 , 𝑡)

 Inclusion removal at slag/steel interface due to 

inclusion Stoke flotation (Kwon et al., 2008)

𝑆𝑖
𝑆 =

𝑑𝑛

𝑑𝑡
=
𝑛𝑖 ∙ 𝑢𝑠𝑡

ℎ Cao et. al (2018)

 You-Jong. Kwon, J. Zhang, and L. Hae-Geon. "A CFD-based Nucleation-growth-removal Model for Inclusion Behavior in a Gas-

agitated Ladle during Molten Steel Deoxidation." ISIJ International 48.7(2008):891-900.

 Cao, Qing, and L. Nastac. "Numerical modelling of the transport and removal of inclusions in an industrial gas-stirred ladle.".

𝑆i
TR:Turbulence random collision

𝑆i
TS

:Turbulence shear collision 

𝑆i
wake

: Bubble wake capture collision

 Overall inclusion removal rate

𝑆i = 𝑆i
wall + 𝑆i

F +𝑆i
BF +𝑆i

TR + 𝑆i
TS +𝑆i

wake

𝑆i
wall

: Inclusion attach to wall

𝑆i
F
: Inclusion floatation

𝑆i
BF

: Turbulence buoyancy collision
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Inclusion Removal by Bubbles

 Bubble-inclusion buoyancy collision (Lou et al., 2013)

 Buoyancy collision due to difference rising velocity between bubble and 

inclusion (kg/m3/s):

 Bubble inclusion turbulent random collision

 Inclusion dragged by velocity fluctuations when inclusion size larger 

than the Kolmogorov microscale in bubble plume area.

 1. For 𝑑𝑖>η

 2. For  𝑑𝑖 ≤ η

η: Kolmogorov microscale 

(size of smallest eddies in 

turbulence, m) 

𝜀: Turbulent dissipation 

rate(𝑚2/𝑠2)

𝐸 𝑠

𝑔−𝑝
: buoyancy collision efficiency

 W. T. Lou, and M. Y. Zhu. "Numerical simulations of inclusion behavior in gas-stirred ladles." Metallurgical and Materials 

Transactions B 44.3 (2013): 762-782.
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 Bubble-inclusion turbulence shear collision

 Shear collision due to shear rate in turbulent eddies especially for the 

small bubble diameter.

 Inclusion removal due to bubble wake capture

 Inclusion near the interface of steel and slag trapped in the bubble wake.

19

capture efficiency

Inclusion Removal by Bubbles

 W. T. Lou, and M. Y. Zhu. "Numerical simulations of inclusion behavior in gas-stirred ladles." Metallurgical and Materials 

Transactions B 44.3 (2013): 762-782.
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Lou et al., 2013

20

Inclusion Model Validation

 Lou, et al. "Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles." Metallurgical & Materials Transactions 

B 44.3(2013):762-782.

Parameters Lou, et al. 2013

Diameter of ladle 2.58 m

Height of ladle 3.2 m

Number of plugs 1

Inclusion size 4~200 μm

Group of inclusion 18

 Inclusion growth and inclusion removal model was validated with Lou 

et al. CFD work;

 CFD-PBM coupled method

 Multiphase (steel & inclusion),  assumed isothermal condition and flat 

surface 

 Flow rate: 200NL/min (7.45 SCFM) & 100NL/min (3.725 SCFM) 

 Constant bubble size: 4mm 

 Time step size: 0.25s
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Inclusion Removal Validation

Time (s)

 SMSVC Validation (100 NL/min)  Lou et al., 2013 (100 NL/min)

 Overall trends of inclusion number density change are similar. 

 Inclusion growth and removal efficiency are assumed to 100% in simulation

 CFD predicted removal rate based on mass for 200 NL/min is 91.17%, 

comparing to paper is 68.16%
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PARAMATRIC STUDY OF FLOW RATE
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Generic Ladle Geometry

23

Parameters
Simplified 

Geometry

Melt depth (m) 2.46 

Slag depth (m) 0.2

Wall taper angle 3o

Plug distance ratio

(
Distance between plugs

Floor diameter
)

0.56

Aspect ratio

(
Melt height

Diameter @ slag − metal interface
)

0.7

Separation angle 180o

Generic ladle model simulation results can be applied to all 

different ladles
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90o

24

Flow Rate Evaluation

Plug 1 Plug 2
Case 1 5 SCFM 5 SCFM
Case 2 5 SCFM 20 SCFM

Case 3 20 SCFM 20 SCFM

 Objectives: Identify impact of flow rate on flow field at 90° separation 

angle:

 Wall shear stress, slag eye formation, dead zone 

Argon Flow Rate
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 Analysis of slag eye

Flow Rate Evaluation

 Slag eye shown up as gas flow rate increased

 Because of the high flow rate 20 SCFM plug, 5 SCFM plug has very 

small slag eye

Analysis of  wall shear stress

View 1

 Wall shear stress increases as the flow rate of argon gas increases
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INCLUSION GROWTH AND REMOVAL 

MODEL



centers.pnw.edu/civs civs@pnw.edu

0

5

10

15

20

W
e
ig

h
t 
p
e
rc

e
n
ta

g
e
 

(%
)

Bubble diameter (in)

27

Baseline Flow Simulation

Flow simulation is used previously validated model 

For inclusion removal process gentle stirring is needed
 Argon flow rate: 5SCFM/plug

 Argon bubble distribution

Plane 1

Plane 2

in

Plane 2Plane 1

Velocity magnitude
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Nucor Ladle Conditions

 Inclusion number density: n ≈ 4.23x1012 /m3 (Geng et al., 2010)

 Material properties:

 Density of inclusion → 𝜌𝑖 = 3900 kg/m3 

 Density of liquid steel → 𝜌𝑠 = 6975 kg/m3

 D. Q. Geng, H. Lei, and J. C. He. "Numerical simulation for collision and growth of inclusions in ladles stirred with different 

porous plug configurations." ISIJ international 50.11 (2010): 1597-1605.

Size (µm) Volume fraction (t=0s)

Bin 10 5.0 75%

Bin 9 6.3 20%

Bin 8 7.9 4%

Bin 7 10.0 1%

Bin 6 13.3 0%

Bin 5 16.6 0%

Bin 4 20.0 0%

Bin 3 25.2 0%

Bin 2 30.7 0%

Bin 1 40.0 0%

Bin 0 50.0 0%
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Plane 1

Plane 2

29

Results of Inclusion Removal

Plane 1 Plane 2

t=100s

t=300s

 Flow field drives 

inclusions towards 

plumes and ladle center

 Steel near the ladle top 

is cleaner after passing 

through high-removal 

rate regions

 Note:
 No slag eye

 De-attachment = 0

 No transportation

 Buoyancy collision 

efficiency = 100%

Inclusion number 

density (1012 n/m3)
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Inclusion Removal Simulation

n Size (µm)
Bin Volume fraction%

t=0s t=100s t=300s

Bin 10 5.0 75 66.7 60.9

Bin 9 6.3 20 18.7 17.4

Bin 8 7.9 4 6.7 6.9

Bin 7 10.0 1 2.2 3.0

Bin 6 10.3 0 0.5 1.2

Bin 5 10.6 0 0.2 0.5

Bin 4 20.0 0 0.2 0.2

Bin 3 25.2 0 0.6 0.5

Bin 2 30.7 0 1.2 1.3

Bin 1 40.0 0 1.9 3.0

Bin 0 50.0 0 2.2 5.0

%

 Inclusion volume fraction distribution

Inclusion size (µm)

0

10

20

30

40

50

60

70

80

5 6.3 7.9 10 10.310.6 20 25.230.7 40 50

t=0s

t=100s

t=300s

 As time goes by, larger inclusion sizes appear, and volume fractions 

continues to grow

 The small inclusions still make up the majority of the population  
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 Inclusion growth and removal due to 9 mechanisms (3 growth, 

6 removal) after 300 seconds

Inclusion Removal Rate

 At 300 (s) the overall inclusion removal rate—based on mass—is 97.1%
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EMS LADLE MODEL
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Electromagnetic Stirring (EMS)

33

Utilizing LF-EMS in a ladle has the following benefits:

 No physical contact needed with material

 Unbroken slag layer (no slag eye formation)

Physical phenomena: Magnetohydrodynamics (MHD)

 MHD is the combination of 

electromagnetics and fluid 

dynamics

 Requires a magnetic field and

a conductive fluid

• Sand, U., Bel Fdhila, R., Yang, H., Eriksson, J. (2008). Control of gas bubbles and slag layer in a ladle furnace by electromagnetic stirring. 

Presented at the AISTech-The Iron; Steel Technology Conference and Exposition.

Ladle with LF-EMS
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Magnetic Field Simulation

34

 The magnetic field was modeled in ANSYS Electronics 

Desktop

 Produced through current carrying wire 

 FEA to solve the magnetic field 

 The solver is frequency domain based

 The magnetic field used for EMS is a traveling magnetic 

field (TMF) (Fireteanu et al., 2015)

 This is created by successive current carrying wires 

that are out of phase

 Phase shift is dependent on number of coils

• V. Fireteanu, E Rousset, E Chauvin, N Chouard. Simultaneous Induction Heating and Electromagnetic Stirring of a Molten Glass Bath. 8th 

International Conference on Electromagnetic Processing of Materials, Oct 2015, Cannes, France. EPM2015. <hal-01335037>
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Fluent MHD Simulation

35

 The magnetic field data is imported into Fluent and applied to 

the fluid domain

 The conductive fluid (molten steel) is influenced by the 

external magnetic field, 𝐵𝑜, through the Lorentz Force
Ԧ𝐹𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝜎 Ԧ𝑣 × 𝐵

 An induced magnetic field, 𝑏, is created by the motion of the 

molten steel. This makes a combined magnetic field of 

𝐵 = 𝐵𝑜 + 𝑏

 The magnetic induction is governed by

𝜕𝐵

𝜕𝑡
+ Ԧ𝑣 ⋅ 𝛻 𝐵 =

1

𝜇𝜎
𝛻2 𝐵 + 𝐵 ⋅ 𝛻 Ԧ𝑣
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SIMULATION OF COIL SYSTEM
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Coil System Depictions

37

 Coil design features rarely described in literature

Expanded View of Coils Ladle & Coils (Teng et al., 2017)

 Industry Information  Literature Information

• Lidong Teng. (2017). Effect of EMS on Inclusion Removal in Ladle Furnace for Specialty Steel Production. AISTech 2017 Proceedings, ABB 

Metallurgy Products, Industrial Automation, ABB AB, Terminalvägen 24, Västerås, SE-721 59 Sweden.
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 Ladle used in simulation

 Height = 3.17 𝑚

 Inner Diameter = 3.25 𝑚

 Initial Slag Height = 0.2 𝑚

Ladle Dimensions 

38

 Ladle used in literature 

 Height = 2.80 𝑚

 Inner Diameter = 2.85 𝑚

 Initial Slag Height = 0.1 𝑚

SMSVC Ladle Dimensions

• Sand, U., Bel Fdhila, R., Yang, H.,  Eriksson, J. (2008). Control of gas bubbles and slag layer in a ladle furnace by electromagnetic stirring. 

Presented at the AISTech-The Iron; Steel Technology Conference and Exposition.
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Operating Conditions

39

 Industry information

 Frequency

• 1.5 𝐻𝑧

 Number of coils

• 14

 Magnetic field range

• 0.0002 – 0.9 𝑇

 Magnetic contours

 Force contours

 Literature information 
(Sand et al., 2008)

 Electric current amplitude

• 1350 [𝐴]

 General stirring pattern

• Figure on slide 33

 Velocity range

• 0.2 – 2 [𝑚/𝑠]

 Flow field development

• ~ 25 [𝑠]

• Sand, U., Bel Fdhila, R., Yang, H.,  Eriksson, J. (2008). Control of gas bubbles and slag layer in a ladle furnace by electromagnetic stirring. 

Presented at the AISTech-The Iron; Steel Technology Conference and Exposition.
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Coil System Positioning

40

 Positioning of coil based on literature

• Sand, U., Bel Fdhila, R., Yang, H.,  Eriksson, J. (2008). Control of gas bubbles and slag layer in a ladle furnace by electromagnetic stirring. 

Presented at the AISTech-The Iron; Steel Technology Conference and Exposition.

Top View Side View

Top View

 SMSVC corner coil span dimensions 

Steel

Slag

Air

LF-EMS

LF-EMSMelt

LF-EMS
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Isometric View

Geometry of Coil System
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 SMSVC coil design 

 Coil height matches height of steel

 Extended anode and cathode

Coil & Ladle Side View 
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Coil Simulation Conditions

42

Coils, Ladle Side, 

& Magnetic Field

 Properties of coil system

 Frequency

• 1.5 𝐻𝑧

 Electric Current

• I = 1500cos(2𝜋 ×1.5𝑡 + 𝜙) 𝐴

 Number of Coils: N = 14

• Windings per Coil: 50

 Phase Shift per Coil

• 𝜙𝑛 =
180°

𝑁
, (Fireteanu, et al. 2015)

• 12.85, [0°, 180°]

 Magnetic Field Range

• 0.0007 – 0.3 𝑇
• V. Fireteanu, E Rousset, E Chauvin, N Chouard. Simultaneous Induction Heating and Electromagnetic Stirring of a Molten Glass Bath. 8th 

International Conference on Electromagnetic Processing of Materials, Oct 2015, Cannes, France. EPM2015. <hal-01335037>
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 Magnetic field strength range: [0.005, 0.400] [𝑇]

Magnetic Field Vector Plots
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Animation of Magnetic Field Vectors
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 Magnetic field strength range: [0.005, 0.400] [𝑇]

Magnetic Field Contour Plots
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Animation of Magnetic Field Vectors



centers.pnw.edu/civs civs@pnw.edu 45

MHD MULTIPHASE 

LADLE SIMULATION
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CFD Multiphase MHD Model
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 Fluent Simulation Setup

 Transient 3D Model

• Current time-step: 0.01 [𝑠]

− In bulk: Δ𝑡 =
Δ𝑥

𝑣𝑚𝑎𝑥
=

50×10−3

2
= 0.025 𝑠 ⇒ Δ𝑡 = 0.01 [𝑠]

− Near wall: Δ𝑡 =
Δ𝑥

𝑣𝑚𝑎𝑥
=

2×10−3

2
= 0.001 𝑠

 Multiphase (no gas injection)

• VOF (Implicit) Model 

• k-𝜖 Turbulent Model, Realizable, & Standard Wall Functions

 Isothermal (neglecting Joule Heating)

 Magnetic Induction MHD Model

• Up to 250 iterations per time step required for convergence
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Magnetic Field & Fluid Domain
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Fluent DomainMaxwell 3D Domain

Steel

Slag

Air

Fluid domain

Magnetic field 

export domain
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Computational Mesh
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 Structured Mesh

 Element Size: 50 [𝑚𝑚]

 Inflation: 

• Type: First layer thickness

• First layer height: 2.0 [𝑚𝑚]

• Max layers: 10

• Growth rate: 1.27

 Structured

 Nodes: 867,996

 Elements: 847,340

Interior Mesh Slice
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Vortex Development – Vector Plots
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𝑡 = 1 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0040 [𝑚/𝑠]

𝑡 = 15 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0312 [𝑚/𝑠]

𝑡 = 5 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0134 [𝑚/𝑠]

𝑡 = 10 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0223 [𝑚/𝑠]

𝑡 = 20 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0405 [𝑚/𝑠]

𝑡 = 25 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0498 [𝑚/𝑠]
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Vortex Development – Streamlines
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𝑡 = 1 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0040 [𝑚/𝑠]

𝑡 = 15 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0312 [𝑚/𝑠]

𝑡 = 5 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0134 [𝑚/𝑠]

𝑡 = 10 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0223 [𝑚/𝑠]

𝑡 = 20 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0405 [𝑚/𝑠]

𝑡 = 25 𝑠
↪ 𝑣𝑎𝑣𝑔 = 0.0498 [𝑚/𝑠]
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MHD Simulation Results
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 General mixing trends correlate 

with literature

 Single vortex obtained

 Velocity in steel melt falls within 

literature range

 Lower average velocity at 25 

[s] than literature result

• Larger ladle

− Longer stirring time 

expected 

 The increase of velocity with 

time follows a linear trend

 Flow field still developing
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Potential Implementation

Gas-stirred Ladle:
 Investigate effects of argon flow rate on slag eye size during inclusion 

removal process (underway) 

 Investigate mixing time of different ladle design (parameters of slag 

thickness, plug position and separation angle, aspect ratio)

 Investigate the effect of ladle refectory life time on wall stress during 

ladle treatment. 

EMS Ladle:
 Investigate the impact of a LF-EMS system on a steel ladle 

(underway)

• Effect on the slag with magnetic field strength

• Effectiveness of inclusion removal

 Investigate the combination of gas and electromagnetic stirring

• Impact of stirring on the slag

• Effectiveness of inclusion removal

52
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 Optimizing the steel cleaning process can result in:

 Reduced cleaning cycle time

 Improved steel quality

 Optimizing ladle mixing and cleaning improves entire ladle 

cycle

 Energy savings

• Reducing 5 minute mixing time by 1 minute can prevent 

up to 20% energy loss

 Increased production

 “Cascading” impact:

 Improved production of quality steel affects any industry that 

uses steel products

Project Potential Benefits

53
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Future Work

54

 Gas-stirred Ladle

 Improve the current inclusion removal model by adding 

buoyancy collision efficiency

 Investigate the effect of different parameters on inclusion 

removal efficiency

 Integrate chemical reactions into the current model

 EMS Ladle

 Continue MHD model development

• Mesh sensitivity study (near wall effects)

• Fine-tune coil design

• Examine EMS under varied ladle dimensions

 Integrate inclusion modeling into EMS simulation

 Combined Gas and EMS stirring
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Comments from Industry 

Collaborator
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Thank You

Questions and Comments
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