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INTRODUCTION

� Current Issues

� Complex transport phenomena with 
multiple process variables

� Difficulty in understanding the dynamic 
evolution of inclusions

� Potential Impacts

� Process design of optimized flow 
condition and physical properties 

� Steel cleanliness improvement and 
final defects reduction
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PROJECT OBJECTIVES (5 YEARS)
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� Develop a comprehensive multiphase reacting CFD model of a steel 

ladle using two stirring conditions

� Gas stirring condition

� Electromagnetic stirring (EMS) conditions

� Study effect of gas flow rate and plug location on mixing efficiency

� Develop a correlation between geometrical parameters and mixing 

time

� Study inclusion transport and evolution

� Develop a model of inclusion generation through chemical reaction

� Consider bubble interaction with inclusion, floatation removal 

mechanism

� Develop correlation between fluid flow and slag physical properties

� Verification from industrial process conditions with measurement



PROJECT SUBPROJECTS
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Subprojects 2016 2017 2018 2019 2020

1 Isothermal gas-stirring ladle model

2 Heat transfer model

3 Gas-stirred isothermal inclusion removal

4 Inclusion interaction mechanisms

5 EMS isothermal inclusion removal

6 Ladle chemical reaction

7 Heat transfer effect on inclusion removal



PROJECT OUTCOMES (Year 1 and Year 2)

� Subproject 1 – Isothermal Gas-stirring Ladle Model 
(completed)

� Models:

• Gas-stirring CFD model based on Nucor ladle using 
Eulerian-VOF and VOF-Lagrangian approaches. VOF-
Lagrangian approach found to better match with industrial 
measurement.

• Bubble breakup and coalescence model based on Laux
and Johansen theory.

• Model validation with water model, cold metal model 
experimental data and plant measurement. Average 
percentage of 8.71% different compared with plant 
measurement.
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PROJECT OUTCOMES (Year 1 and Year 2)

� Research Findings:

• Effects of argon flow rate 

o Argon flow rate ↑, slag eyes size ↑

o Argon flow rate ↑, wall shear stress ↑

o Argon flow rate ↑, mixing time ↓

• Effects of slag thickness and slag density

o Slag thickness ↓, slag density ↑, eye size ↑

• Effects of flow rate on bubbles size, breakup and coalescence

o Argon flow rate ↑, breakup frequency ↑, coalescence frequency ↓

o All bubbles reach equilibrium diameters as time elapse

• Effects of plug position

o Plug distance ratio ↑, mixing efficiency ↑

o Mixing efficiency is better at separation angle of 60o

• Effect of ladle aspect ratio

o Aspect ratio ↑, mixing efficiency ↑
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PROJECT OUTCOMES (Year 1 and Year 2)

� Subproject 2 – Heat Transfer Model (completed)

� Models:

• Heat transfer gas-stirring ladle model. The 
temperature stratification is reduced with gas-
stirring

� Research Findings:

• Effect of initial wall temperature –
Temperature stratification decrease faster 
with higher wall initial temperature 
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OBJECTIVES – 3rd YEAR
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� Subproject 3 – Gas-Stirred Isothermal Inclusion Removal

� Develop basic inclusion removal model in isothermal 
conditions, with predefined initial inclusion size distribution and 
simplified inclusion removal criteria.

� Subproject 4 – Inclusion Interaction Mechanisms

� Develop inclusion growth mechanism from multiple sources 
such as inclusion-inclusion collision, as well as refine inclusion-
bubble interactions and removal mechanisms.

� Subproject 5 – EMS Isothermal Inclusion Removal

� Develop a working multiphase EMS model with included slag 
layer.
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ROADMAP 
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STATE OF THE ART
� Gas-stirred ladle - flow field, slag eye or effect of ladle design on the 

mixing efficiency [1-3].

� Comparison of induction stirring (EMS) with gas stirred ladle and 

combined gas/EMS [4].

� Inclusion behavior modeled by 4 main methods.

� Static numerical models of nucleation, growth and removal of 

inclusions [5-7]. No consideration of inclusion transport.

� CFD-based trajectory method [8-10]. No consideration of inclusion 

collision and agglomeration. 

� CFD-based characteristic inclusion parameters [11-13]. Inclusion 

distribution is simplified with exponential function with inclusion 

radius.

� CFD-based PBM coupled model [14-16]. Inclusion divided into multiple 

groups size. Assumptions of flat free surface without slag and 

constant bubble size. Predefined initial inclusion distribution.
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CFD METHODOLOGY
Gas-stirred ladle model

• Fluid zones (slag, melt, inclusion and air)

– Multiphase flow: Eulerian-Eulerian

– Eulerian parameter: Multi-fluid VOF model

– Turbulent model: Realizable k-epsilon

• Argon injection

– Discrete phase model

Inclusion removal model

� Inclusion transport

– Population balance model (PBM) - discrete method

� Inclusion removal

– Removal from slag and wall only

1) Import quasi-steady velocity (��,�,��, volume fraction 

(��	
���, turbulence 
	&	�	(for slag, melt and air)

2) Apply melt ��,�,�, 
	&	�	into inclusion phase



GAS-STIRRED LADLE MODEL
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LADLE GEOMETRY
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Parameters
Simplified 

Geometry

Melt depth (m) 2.46 

Slag depth (m) 0.2

Wall taper angle (o) 3

Plug distance ratio

�
Distance	between	plugs

Floor	diameter
�

0.56

Aspect ratio

�
Melt	height

Diameter	@	slag ( metal	interface
�

0.7

� Simplified geometry based on 
NS Decatur ladle



SLAG EYES COMPARISON
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Slag eye size (m)

New geometry with Eulerian-Eulerian model 0.80 (31.5 in)

Previous geometry with Eulerian-VOF model 0.79 (31.2 in)

Nucor plant measurements 0.7-0.79 (28-31 in) out of 5 
measurement

New geometry with 
Eulerian-Eulerian model

Previous geometry with 
Eulerian-VOF model

� Base Case 
� Argon flow rate: 

30SCFM/plug



FLOW COMPARISON
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GENTLE STIRRING SIMULATION RESULTS
� For inclusion removal process gentle stirring 

is needed
� Argon flow rate: 5SCFM/plug

Plane 1

Plane 2

Plane 2

Velocity magnitude

Plane 1

Liquid 
steel

Slag

Argon injection

Plane 1



INCLUSION REMOVAL MODEL
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INCLUSION REMOVAL MECHANISM
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� Inclusion removal mechanisms

� Slag

• Inclusions reach the slag through flow motion and floatation.

� Wall

• Inclusion attachment to refractory

� Collision and growth (Subproject 4)

• Agglomeration from inclusion-inclusion collision

� Bubble (Subproject 4)

• Inclusion attachment to bubbles

1. Mazumdar, Dipak, and James W. Evans. Modeling of steelmaking processes. CRC Press, 2009.
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Particle size groups 

INCLUSION REMOVAL MODEL
� Population balance equation (PBE):

*

*+
, -. , + + 0 · ��, -. , + = S4

5 + S4
6

*

*+
7��. + 0 · ��7��. = 7�-.8.

9 + 7�-.8.
:

� Mass conservation equation:
*

*+
���7�� + 0 · ���7���� = 7�-.S4

5 + 7�-.S4
6

� Only inclusion removal through slag and wall are considered.

� Inclusion growth due to nucleation, diffusion and coalescence and removal 

through bubbles will be included in Subproject 4.

, -. , + :   inclusion number density (particle/m3) -. :   inclusion volume of size i (m3)  

�� :   inclusion velocity (m/s) �. :   inclusion volume fraction of size i

S4
5 :   inclusion removal at wall (1/m3.s) S4

5 :   Inclusion removal at slag (1/m3.s)
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INCLUSION REMOVAL RATE
� Inclusion removal from wall through diffusion process [1]

8.
9 =

;.;;=>?
@
A

B
C
A

DE

FGHII
J.
>,�-. , +� (1/m3.s)

� Inclusion removal at slag/steel interface due to inclusion Stoke 

floatation [2]

8.
: =

KL

KM
= (

LN·OEP

	
(1/m3.s)

� Inclusions are assumed to remove from the slag by floatation.

� The factor on the ability of the inclusions to overcome interfacial energy at 

the interface during the separation process is currently neglected.

, -. , + :   inclusion number density (particle/m3)          Q� :  local interface area (m2)

-R�SS :   cell volume of boundary layer (m3) ��M :  floating velocity calculated by Stokes’ law (m/s)

ℎ :   local fluid height (m)

1. W. T. Lou, and M. Y. Zhu. "Numerical simulations of inclusion behavior in gas-stirred ladles." Metallurgical and Materials Transactions B 44.3 (2013): 762-782.
2. Y.J. Kwon, J.Zhang, and H.G. Lee. ISIJ International, Vol. 48 (2008), No. 7, pp. 891–900
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INCLUSION INITIAL CONDITION AND 
MATERIAL PROPERTIES

�Uniform size of 5 µm inclusion.

�Uniform initial inclusion number density: 

n ≈ 4.23x1012 /m3 [1,2]

�Density of inclusion, 7� = 3900 kg/m3 [1]

�Density of liquid steel = 6975 kg/m3

1. D. Q. Geng, H. Lei, and J. C. He. "Numerical simulation for collision and growth of inclusions in ladles stirred with different porous plug 
configurations." ISIJ international 50.11 (2010): 1597-1605.
2. L. T. Wang, Q. Y. Zhang, S. H. Peng and Z. B. Li. "Mathematical model for growth and removal of inclusion in a multi-tuyere ladle during 
gas-stirring." ISIJ international 45.3 (2005): 331-337.
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REMOVAL FROM WALL ONLY
Inclusion diameter, U. = 5	WX

� Number density is reduced near to wall region. 
� Higher removal rate at the region where velocity is higher.

Inclusion number 

density, (1012n/m3)

Plane 1 Plane 2
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REMOVAL FROM SLAG ONLY

� Number density is reduced near to slag/steel interface.
� Clean steel from steel/slag interface is carried by the flow to the bottom of ladle.

>

Inclusion number 
density (1012 n/m3)

Inclusion number 
density (1012 n/m3)

Plane 1 Plane 2

Surface A: Inclusion is removed from 
slag/steel interface

A

Inclusion diameter, U. = 5	WX
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INCLUSION REMOVAL RATE
t = 300 s

Slag removal only Wall removal only

Inclusion removal rate per cell volume (kg/m3s)
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REMOVAL FROM WALL AND SLAG

�Higher concentration of inclusion at the side wall and bottom of ladle where dead zone is present.
�Lower inclusion concentration in Geng et. al’s work at argon plumes due to bubbles’ removal.

Plane 1

t = 100 s

t = 300 s

Plane 2
Inclusion number 
density (1012 n/m3)

Inclusion number 
density (*1012 n/m3)

1. D. Q. Geng, H. Lei, and J. C. He. "Numerical simulation for collision and growth of inclusions in ladles stirred with different porous plug configurations." ISIJ 
international 50.11 (2010): 1597-1605.

Geng et. al (2010)

[1]

Inclusion diameter, U. = 5	WX
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VOLUME AVERAGE NUMBER DENSITY
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Parameters
Current
model

Wang et. al 
(2006)

Melt depth (m) 2.46 3.325

Slag depth (m) 0.2 -

Plug distance ratio

�
Distance	from	center	to	plug

Floor	radius
�

0.56 0.5

Aspect ratio

�
Melt	height

Diameter	@	slag ( metal	interface
�

0.7 1.21

Plug separation angle (o) 180 90

Argon flow rate (m3/s)
0.00472

(10 SCFM)
1.39 *

(2945 CFM)

Removal ratio for 50 μm 

inclusion
11.5% ≈12
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1. L. T. Wang, et al. "Mathematical model for growth and removal of inclusion in a multi-tuyere ladle during gas-stirring." ISIJ international 45.3 (2005): 331-337

VALIDATION
Wang et. al (2006)

YZX[\]^	J]+_[:

=
, -. , 0 ( , -. , + = 300b

,�-. , 0�
∗ 100%

* Too high for gentle stirring. Need verification
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• Initial size distribution of inclusion in ladle
, U. Mg; = 2	 × 10jkZ^�(1.0U. × 10=� [1]

• Total of 6 groups size of inclusion (6 bins)

LOG-NORMAL INCLUSION DISTRIBUTION

1. W. T. Lou and M. Y. Zhu: Metall. Mater. Trans. B, 44B (2013), 762
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INCLUSION REMOVAL RATIO
t = 300 s

U. = 13.9	WX U. = 21.1	WX U. = 32	WX

U. = 9.2	WXU. = 6.1	WXU. = 4	WX

� Larger inclusion size group shows higher removal ratio.
� Higher removal rate for larger inclusions.

YZX[\]^	J]+_[ =
, -. , 0 ( , -. , + = 300b

,�-. , 0�
∗ 100%

Removal ratio (%)

>
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INCLUSION REMOVAL RATIO
t = 300 s

U. = 13.9	WX U. = 21.1	WX U. = 32	WX

U. = 9.2	WXU. = 6.1	WXU. = 4	WX

YZX[\]^	J]+_[ =
, -. , 0 ( , -. , + = 300b

,�-. , 0�
∗ 100%

Removal ratio (%)

>
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REMOVAL RATIO

Removal ratio per inclusion group size
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� Inclusion removal at interface with separation time[1]

• Inclusion is removed when thin steel film ruptures during 
the collision

if pq > s, tu ≥ tw

Removal flux    = (7x ∗ �y ∗ ,. (kg/s.m2) 

• Collision time (+R) and rupture time (+z):

tu =
KN
@·{I

j>|}~

�

�

· {π + 2arcsin 1 +
j>��

��}~{I

KN
@�� {N�{}

�

�
�

�
}

tw =
�

=k
Wx

��

�}~	��
� U.

�,     � = arccos	{1 ( 1.02 ·
�KN{NO�

�

j>�}~

�

�

�y :  relative velocity between slag and inclusion

�x� :  melt/slag interfacial tension

ℎ����x� , �� :  critical thickness of liquid film

INTERFACIAL TENSION ON SLAG REMOVAL

1. H.T. Ling, L.F. Zhang, and H. Li. "Mathematical modeling on the growth and removal of non-metallic inclusions in the molten steel in a two-strand continuous 
casting tundish." Metallurgical and Materials Transactions B 47.5 (2016): 2991-3012.

Inclusion collide with 
interface and form 
thin steel film

Drainage and rupture 
of thin film during 
separation process

Inclusion return to melt if 
film is not ruptured

tu ≥ tw tu ≤ tw
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SLAG REMOVAL MODEL COMPARISON

4.20E+12

4.21E+12

4.21E+12

4.22E+12

4.22E+12

4.23E+12

4.23E+12

4.24E+12

0 50 100 150 200 250 300

V
o
lu

m
e
 a

v
e
ra

g
e
 n

u
m

b
e
r 

d
e
n
s
it
y 

n
/m

3

Time (s)

Stoke floatation

Stoke floatation+
separation time

Volume average number density (n/m3)

• The effect of liquid steel/ slag interfacial energy will be studied.

U. = 5	WX



PARAMETRY STUDY ON 

MIXING EFFICIENCY
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MIXING PROCESS-METHODOLOGY

� The flow reached quasi-steady 
state.

� Six tracers are introduced in the 
ladle

� Tracer recovery was calculated.

� The mixing time is defined as the 
time of attaining a 95% degree of 
homogenization.

Tracer recovery(%) = Current tracer concentration / Equilibrium 

tracer concentration

37
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EFFECT OF GAS FLOW RATE AND SLAG 
THICKNESS

� Mixing time decreases with the increasing of gas flow rate, increases with

the increasing of slag thickness.

� Higher gas flow rate can promote the mixing process, while thinner slag 

thickness can promote mixing process.



SUMMARY SINCE NOV
Subproject 3 - Gas-Stirred Isothermal Inclusion Removal:

� The inclusion removal model through slag and wall by Population 

Balance Method (PBM) is developed. 

� The inclusion removal rate from the slag and the wall is studied.

� Inclusion removal from slag shows higher contribution compared to 

removal from wall.

� Multiple size of inclusion distribution at initial time is studied.

� Removal rate of inclusion is higher with larger size of inclusions.

Subproject 1 - Isothermal Gas-stirring Ladle Model:

� Further parametric study is conducted to study effect of gas flow rate 

and slag thickness on mixing efficiency.

� Mixing time decreases with the increasing of gas flow rate, increases 

with the increasing of slag thickness.
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FUTURE WORK (YEAR 3)

Subproject 4 - Inclusion Interaction Mechanisms:

� Further develop the inclusion removal model by adding 
inclusion growth mechanism, inclusion-inclusion interaction, 
inclusion-bubbles interaction.

� Further improve the inclusion removal model with 
consideration of changing the slag/liquid steel interfacial 
energy on inclusion removal.

Subproject 5 - EMS Isothermal Inclusion Removal:

� Continue develop electromagnetic stirring (EMS) ladle and 
study inclusion removal in EMS ladle.

40
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COMMENTS FROM INDUSTRY
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Thank You

Questions and Comments
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