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Research Motivation

➢ Current Issues

▪ Difficulty in understanding the dynamic 

evolution of multiphase flow and 

inclusions

▪ Inclusions directly impact steel cleanliness

▪ Ladle lifetime – wall shear stress

▪ Different stirring methods (Gas & EMS)

▪ Need cost-effective tool to guide ladle 

design and refining conditions

➢ Potential Impacts

▪ Increased productivity through 

improved operating conditions

▪ Steel cleanliness improvement and 

final defects reduction
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Research Objectives
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➢ Long-term Objectives (5+ Years):
▪ Develop a validated comprehensive multiphase CFD model of a steel 

ladle using two stirring methods (Gas stirring & EMS)

▪ Optimize ladle stirring conditions for steel cleanliness, productivity, 

and equipment lifetime

➢ Current Objectives – 2019:
▪ Investigation of Inclusion Removal in Gas-stirred & EMS Ladle 

• Impacts of bubble-inclusion interaction and inclusion growth on 

overall inclusion removal

• Impacts of electromagnetic stirring strength on flow field, slag eye 

formation, and wall shear stress

▪ Investigation of Chemical Reactions in Steel Ladle Refining

• Development of kinetics for re-oxidation model

• Development of kinetics for de-sulfurization model

• Optimize stirring conditions to minimize oxidation and heat losses 

while improving inclusion removal and desulfurization
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Ladle Project Roadmap
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Projects

Projects 2016 2017 2018 2019 2020

1 Isothermal gas-stirring ladle model

2 Heat transfer model

3 Gas-stirred isothermal inclusion removal

4 EMS isothermal inclusion removal

5 Ladle chemical reaction

6 Heat transfer effect on inclusion removal
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Outcomes & Deliverables
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➢ Project #1 (2016 – 2017): Isothermal Gas-stirred Ladle Flow Simulation –

Nucor Decatur Ladle

▪ Validated CFD predictions of flow field and slag eye size against 

measurements (avg slag eye size error: 8.7%)

▪ Evaluated Nucor Ladle scenarios:

• Increasing plug distance ratio by 10% of ladle diameter (0.1D) 

decreased mixing time by 24 seconds (18% decrease)

• At 0.6D plug distance ratio, a 60o plug separation angle yields 25% 

faster mixing versus 180o and 44% faster than 120o

➢ Project #2 (2017): Heat Transfer Effect in Gas-stirred Ladle – Nucor 

Decatur Ladle

▪ CFD predictions of steel temperature align with literature1

▪ Investigated effects of initial wall temperature on steel temperature 

stratification:

• Temperature stratification decreases faster with higher wall initial 

temperature, 29% faster (71 seconds versus 99 seconds)

Projects (2016 – 2019): Completed: 3, Ongoing: 2

1J. L. Xia and T. Ahokainen, "Thermal stratification in a steel ladle." Canadian metallurgical quarterly 40.4 (2001): 479-487.
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Outcomes & Deliverables
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➢ Project #3 (2018 – 2019): Gas-Stirred Isothermal Inclusion 

Growth and Removal – Generic Ladle 

▪ Developed inclusion growth and removal model to predict inclusion 

removal efficiency based on design and conditions

▪ Investigated effects of plug separation angle:

• Increasing plug separation angle from 90° to 180° improved 

inclusion removal efficiency by 5%

➢ Project #4 (2019): EMS Isothermal Flow, Inclusion Growth 

and Removal 

▪ Developed EMS transient multiphase flow model

▪ Investigated impacts of taper angle on bulk velocity and slag-eye size

• 5° taper angle decreases bulk vel. and slag eye size by 13% 

relative to 0°

▪ Investigated wall shear stress in EMS ladle

Projects (2016 – 2019): Completed: 3, Ongoing: 2
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Timeline for 2019

Task Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
ro

je
ct

 3
Im

p
ro

v
e

m
e

n
t
o

f 
In

c
lu

s
io

n
 

R
e
m

o
v
a

l 
M

o
d

e
l

Improve Current Bubble 
Model

Add Buoyancy Collision 
Efficiency

Validate Improved Inclusion 
Removal Model

Modified Bubble Model 
Applied in Generic Model

P
ro

je
ct

 4
Is

o
th

e
rm

a
l
E

M
S

 

In
c
lu

s
io

n
 R

e
m

o
v
a

l

EMS Multiphase Model

Add of Inclusions to EMS
Multiphase Model

Combined Gas-Stirring and 
EMS

P
ro

je
ct

 5
D

e
v
e

lo
p

 C
h
e

m
ic

a
l 

R
e

a
c
ti
o

n
 M

o
d

e
l Literature Research

Basic Model Development 
and validate

Chemical Reaction Model 
Applied in Generic Model



centers.pnw.edu/civs civs@pnw.edu 10

Results Since Semi-Annual Meeting
in April 2019
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❖ Validation with Lou et al.’s ladle inclusion removal 

❖ Generic ladle inclusion removal

Project 3:

GAS-STIRRED LADLE MODEL WITH 

INCLUSION
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Methodology & CFD Models

Gas-stirring ladle model

➢ Fluid zones (slag, melt, inclusion and air)

– Eulerian-Lagrange multiphase flow

– Realizable k-epsilon turbulent model

➢ Argon injection

– Discrete phase model (DPM)

Inclusion removal and growth model

➢ Inclusion removal and growth

– Population balance model (PBM) – continuum method

– Transport by bubble, removal by slag and wall

1) Import quasi-steady velocity (𝑢𝑥,𝑦,𝑧), volume fraction 

(𝛼𝑝ℎ𝑎𝑠𝑒), turbulence 𝑘 & 𝜀 (for slag, steel and air)

2) Apply steel 𝑢𝑥,𝑦,𝑧, 𝑘 & 𝜀 into inclusion phase

Liquid 

steel

Slag

Argon injection
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Inclusion Growth and Removal Model
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▪ Lou, Wentao, and M. Zhu. "Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles." Metallurgical & Materials 

Transactions B Process Metallurgy & Materials Processing Science 44.3(2013):762-782.

▪ Cao, Qing, and L. Nastac. "Numerical modelling of the transport and removal of inclusions in an industrial gas-stirred ladle.".

➢ Inclusion removal behavior 

Bubble

Wall

Slag

Inclusion 

removal

▪ Inclusions flow motion and flotation.

▪ Inclusion attachment to refractory

▪ Buoyancy collision

▪ Turbulent random collision

▪ Turbulent shear collision

▪ Bubble wake capture

Inclusion transport

to slag

Inclusion growth

▪ Turbulent random collision

▪ Turbulent shear collision

▪ Stokes buoyancy collision

Growth

Floatation to slag

Wall 

adhesion

Melt

Slag

Inclusion
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Lou et al. (2013)
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Inclusion Model Validation

▪ Lou, et al. "Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles." Metallurgical & Materials Transactions 

B 44.3(2013):762-782.

Parameters Lou et al. (2013)

Diameter of ladle 2.58 m

Height of ladle 3.2 m

Number of plugs 1

Inclusion size 4~200 μm

Group of inclusion 18

➢ Work by Lou et al. (2013)

▪ 150-ton ladle

▪ Flow rate: 200NL/min (7.45 SCFM)

▪ Bubble size: 4mm (constant)

▪ CFD-PBM coupled method, Eulerian-Eulerian multiphase model

▪ Isothermal condition and top flat free surface (no slag)

▪ Slag eye size: 0.316 m2
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Inclusion Removal Validation

➢ Bubble attachment mechanism is shown to be the most dominant removal mechanism

➢ Inclusions carried by bubbles which reach and rupture at slag eye will be released back to 

steel. 

– Current model does not factor inclusion release at slag eye, resulting in overprediction of 

inclusion removal rate.

➢ Assumption: when a bubble ruptures at slag eye, 100% of bubble-captured inclusions will 

release into steel

– 29.76% of bubbles breakup at the slag eye area, therefore all inclusions captured by these 

bubbles are assumed to be released back into the steel

– Overall removal rate will drop from 98.61% to 69.53%

Rupture at slag Rupture at slag eye

70.24% 29.76%

Slag Wall Bubble

Total 

Inclusions 

Removed

Approximate 

rate with 

inclusion 

release

Inclusion 

Release 

Results

Lou et al.

SMSVC Ladle 1.87% 0.001% 96.72% 98.61% 69.53% 68.16%

❖ Note: Based on Bubble mass
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Generic Ladle Geometry
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Case

Plug 

separation 

angle

Gas flow 

rate

Slag eye 

diameter

Case 1

(Base)
180° 5/5 SCFM 0 m

Case 2 90° 5/5 SCFM 0 m

Case 3 90° 5/20 SCFM
0.64 m 

(x1)

Case 4 90° 20/20 SCFM
0.62 m 

(x2)

➢Generic model based on Nucor Decatur ladle

➢Effect of plug separation angle and gas flow rate on inclusion 

removal will be studied

180o 90o
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Inclusion Volume Fraction (Base Case)

100 s

Plug cross sectional plane (Plane 1)

200 s

100 s

300 s

200 s 300 s

Center plane (Plane 2)
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Inclusion Size Distribution (Base Case)

➢ Initial distribution can be calculated: (Lou et al., 2013)

𝑛(𝑑𝑖) 𝑡=0= 2 × 1014𝑒−𝑑𝑖×10
6

➢ All size inclusion being removed over time

➢ From 0s to 300s, smaller sizes remain dominant population

▪ Lou et al. "Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles." Metallurgical & Materials Transactions 

B 44.3(2013):762-782.
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Effects of Plug Position and Flow Rate

Case
180o

5/5
90o

5/5
90o

5/20
90o

20/20
% bubble 
rupture at 

slag eye
0% 0% 11.12% 9.55%

Removal 
Rate

98.8% 94.1% 86.8%* 89.7%*

𝜀
(𝑚2/𝑠3)

0.0075 0.0072 0.0213 0.0353

➢Removal rates for 90° 5/20 and 

20/20 cases were adjusted 

based on bubble rupture at slag 

eye assumption

➢For the same gas flow rate, 

separation angle of 180o shows 

better overall inclusion removal

➢For the same plug separation 

angle, increased flow rate will 

decrease inclusion removal rate 

as slag eye appears

➢Turbulence dissipation rate (𝜀) 
corresponds to improved 

inclusion removal (without slag 

eye)

* After slag eye inclusion re-release adjustment
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Effects of Plug Position and Flow Rate

➢180o 5/5 ➢90o 5/5 

➢90o 5/20 ➢90o 20/20 

Case
180o

5/5

90o

5/5

90o

5/20

90o

20/20

Removed 

by bubble
95.2% 86.4% 83.1% 87.5%

Removal 

Rate
98.8% 94.1% 86.8%* 89.7%*

Plume

Vol. (m3)
2.05 2.03 2.56 3.03

➢Larger bubble plume leads 

to higher removal rate

▪ Inclusions are more 

likely to interact and be 

attached to bubbles
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Project 4:

EMS LADLE MODEL
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Numerical Models

22

➢ Magnetic Field Model (ANSYS Maxwell FEM)

▪ Fluid domain: Single phase (vacuum or steel)

▪ Alternating current: 𝐼 = 𝐼𝑜 cos(2𝜋𝑓𝑡 + 𝜙𝑠)

▪ Traveling magnetic field: 𝜙𝑠 =
180°

Number of Coils

• Magnetic field magnitude: deciTesla range

− Amperage: 800-1500 [A] 

➢ Fluid Flow Model (ANSYS Fluent CFD)

▪ Three-dimensional

▪ Transient (Δ𝑡 = 0.01s)

▪ Isothermal

▪ Multiphase VOF (Steel, Slag, Air)

▪ k-𝜖 turbulence model

▪ MHD Solver: ANSYS Fluent MHD module
[17] V. Fireteanu Etienne  Rousset. Simultaneous induction heating and electromagnetic stirring of a molten glass bath. 10 2015.
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MHD Module Scaling Factor
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➢Scaling factor:

▪ Gradually increases the MHD effect to its actual magnitude 

through a series of restarts by scaling the external magnetic field

▪ Used to calibrate the magnetic field generated to properly 

implement the MHD effects within the known flow time

▪ Highly dependent on the strength of the magnetic field

𝑩𝒐 Magnitude Scaling CFD Literature

DeciTelsa 5 0.72 m/s 0.72 m/s

MilliTelsa 30 4.5 cm/s 4.3 cm/s

➢Viscous resistance limits liquid 

metal bulk velocity due to MHD to 

around 1 [m/s]

[18] U. Sand, H. Yang, J.-E. Eriksson, and R. B. Fdhila, “Numerical and Experimental Study on Fluid Dynamic Features of Combined Gas and Electromagnetic 

Stirring in Ladle Furnace.” 2009
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Ladle Geometry & LF-EMS Unit
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➢Two simplified ladle geometries:

▪ Case I: Cylindrical ladle (Sand et 

al., 2019)

▪ Case II: Nucor Decatur ladle

Ladle Parameters Case I Case II

Top Radius [m] 1.425 1.79

Bottom Radius [m] 1.425 1.62

Steel Height [m] 2.80 2.46

Slag Thickness [m] 0.1 0.15

Taper Angle [deg] 0 3

Steel Tonnage [Tonne] 128.6 157.1Generic Ladle

LF-EMS Unit Position

[19] U. Sand, H. Yang, J.-E. Eriksson, and R. B. Fdhila, “Numerical and Experimental Study on Fluid Dynamic Features of Combined Gas and Electromagnetic 

Stirring in Ladle Furnace.” 2009
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Effective Stirring Region
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➢Skin depth measures how well a electromagnetic field can 

penetrate a conductive medium given by 𝛿𝑆 = 1/ 𝜋𝑓𝜎𝜇

➢ Calculated 𝛿𝑆: 0.155 [m]

➢ Simulated 𝛿𝑆: 0.174 [m]

➢ Percent difference: 12%

➢ Absolute difference: 0.019 [m]

[20] F.T. Ulaby. Electromagnetics for Engineers.
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Mesh Sensitivity Study

26

➢Three fluid domain grids were 

compared with an amperage of 

1500 [A]

➢M3 is with skin depth refinement

[21] M. Javurek, M. Barna, P. Gittler, K. Rockenschaub, and M. Lechner, “Casting and solidification flow modelling in continuous casting of round bloom strands with 

electromagnetic stirring,” Steel Research International, vol. 79, 08 2008.

Mesh 15s 20s 25s % Diff. M3

M1 0.69 0.74 0.77 2.4%

M2 0.71 0.80 0.82 4.3%

M3 0.69 0.78 0.79 -

M1 M3 (skin depth refinement)

Mesh M1 M2 M3

Element Count 1.6E6 9.57E5 1.1E6

Min. Quality 0.128 0.553 0.479

➢M3 was selected for its 

balance of cell quality and 

density along with the 

refinement criterion

Bulk Velocity for Each Mesh



centers.pnw.edu/civs civs@pnw.edu

Validation

27

➢Sand et al. (2009) used a Lorentz force distribution paired with:

▪ Semi-empirical force: 𝐹𝑧 = 𝐹𝑜,𝑧 1 −
𝑤

2𝜈𝜏

Study 10s 15s 20s 25s Abs. Diff. % Diff.

Sand et al. 0.54 0.62 0.66 0.714 - -

SMSVC 0.48 0.60 0.67 0.719 0.006 0.83%

25s Eye [m2] Abs. Diff. % Diff.

Sand et al. 1.55
0.39 25%

SMSVC 1.94

Sand et al. SMSVC
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Case I – Vortex Development

28

➢ Vortex begins at wall closet to LF-EMS unit

➢ Vortex arms spread out toward to side walls

➢ Vortex is symmetric about zy-plane

1s 10s 15s
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Case I – Vortex Development

29

➢Fully-developed vortex encompasses the entire 

steel domain
➢Two symmetric 

recirculation 

plumes at core

➢Effect of these 

plumes on slag 

eye formation is 

evident with 

harsh stirring 

conditions

25s 25s | Core
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Effects of Current Amplitude
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➢ Decreasing the 

amperage by 300 [A] 

reduces the velocity 

by 0.2 [m/s]

➢ Constant MHD 

scaling factor of 5 

results in similar 

velocity development 

profiles

➢ This study aimed to find a correlation between bulk 

velocity and current amplitude
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Case I – Effects of Taper Angle
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➢ Constant bottom radius:

▪ 0°: 128 [Metric Ton]

▪ 5°: 147 [Metric Ton] 

Taper Angle 0° 3° 5°

Bulk Velocity [m/s] 0.79 0.73 0.69

Area Ratio 0.41 0.38 0.34

Area Ratio =
Eye Area

Total Area

Current Amplitude: 1500 [A]

Taper Angle: 0° Taper Angle: 5°

Slag-Eye Area

➢ Taper angle elongates the core

➢ Increased taper angle results in 

decreased bulk velocity and slag-eye 
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Case I – Effects of Taper Angle

32

➢ Increased taper angle:

▪ Larger inertia 

▪ Reduced momentum 

transfer

▪ Elongated vortex core

Taper Angle: 0° Taper Angle: 5°

0° 5°

ZY Plane
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Case I – Effects of Taper Angle

33

➢ Increased taper angle:

▪ Vortex plumes spread 

out

▪ Larger low velocity 

zones

Taper Angle: 0° Taper Angle: 5°

0° 5°

XY Plane
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Case II – Vortex Development

34

➢ Simplified Nucor Decatur ladle geometry

➢ Taper angle and larger ladle diameter elongate the core 

along the positive zy-plane
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Effects of Ladle Geometry

35

➢ Taper angle influences slag eye size

▪ Potential for less oxidation

➢ Both cases are impacted by the dual vortex plumes 

1200 [A] 1500 [A]

Case
Eye Area

[m2]
Area Ratio

Velocity 
[m/s]

I 2.2 0.35 0.61

II 1.4 0.14 0.50

Case I Case II Case I Case II

Case
Eye Area

[m2]
Area Ratio

Velocity 
[m/s]

I 2.9 0.41 0.78

II 2.75 0.28 0.66
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Wall Shear Stress per Stirring Method
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➢ Simplified Nucor EMS (1200 [A]):

▪ Two high stress regions

▪ Two recirculation zones cause 

high shear stress on the side and 

bottom surfaces closest to LF-

EMS

➢ Simplified Nucor Gas (90°):

▪ Two orientations:

• 90° and 180° plug 

separation

▪ Stress resides near steel/slag 

interface

(20/20 SCFM)(5/20 SCFM)

[Pa] 0 36 73 109 144 [Pa] 0 2 4 6 8

Bottom ViewIsometric View
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Inclusion Removal
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➢Relies only on wall and slag removal (no bubble removal)

▪ Removal runtime of 300 seconds results in:

• EMS: 24% removal at 1500 [A]

• Gas: 89% removal at 90° separation with 20 SCFM flow rate

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1E+13

 5.0  6.3  7.9  10.0  12.6  15.9  20.0  25.2  31.7  40.0  50.4

N
u

m
b

e
r 

D
e

n
s
it
y

Inclusion Diameter (μm)

0s 100s

200s 300s

➢Literature [22] 

states EMS 

inclusion 

removal is 

typically 

between 30-

50%

[22] T. Lidong, “Effect of ems on inclusion removal in ladle furnace for specialty steel production,” 2017.
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Project 5:
CHEMICAL REACTION MODEL
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Chemical Reaction Modeling

39

➢Purpose: Investigate effects of chemical reactions on 

the model

▪ Optimal temperature for desulfurization

▪ Reoxidation effects
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Numerical Models

40

➢Chemical Model 

▪ Formation and reaction of inclusion species 

• Potential for liquid and solid inclusions

▪ Reaction rates and coefficients

➢Fluid Flow Model 

▪ Three-dimensional

▪ Transient

▪ Multiphase VOF (Steel, Slag, Argon)

▪ k-𝜖 turbulence model

▪ MHD Solver: ANSYS Fluent MHD module
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Potential Implementation

➢Optimized ladle stirring conditions

▪ Minimize slag eye formation by altering gas 

injection rate and plug placement

▪ Maximize inclusion removal for improved steel 

quality and higher productivity

• Balance flow velocity and slag-eye size

▪ Minimize wall shear stress for longer ladle lifetime

• Prediction of maintenance cycles

➢EMGAS Ladle

▪ Wall shear stress reduction due to plug placement

▪ Inclusion removal efficiently and productivity

41
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Future Work
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➢Gas-stirred Ladle

▪ Inclusion removal upon slag-eye impact

▪ Validation inclusion removal model with industry 

measurement

➢EMS Ladle

▪ Validate with force distribution data from industry

▪ Combined EMGAS simulation

• Wall shear stress

• Plug placement

➢Chemical Modeling

▪ Build the chemical kinetic CFD models
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AIST Digital Transformation 2019:

Smart Ladle

43

➢ Issues:

▪ Current ladle procedures rely 

on operator expertise 

• Experience and “gut 

feeling”

▪ Operators may not have all 

information (e.g. cold ladle)

➢ Objectives:

▪ Use deep learning methods to 

predict steel tundish/casting 

temperatures using process 

data

▪ Improved quality and 

consistency in steel casting 

process

Refining ladle process and variables
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Smart Ladle:

AIST Digital Transformation 2019

44

➢ Process:

▪ Data provided to deep learning 

network, which finds quantitative

correlations

▪ Network learns from data to predict

future trends from real-time data feed

▪ Real-time predictions can be used to 

control process

➢ Expected Outcomes:

▪ Process-integrated deep learning 

network predicting tundish temperature

▪ Student engagement in digital 

technologies and deep learning

▪ Student awareness of steel industry 

careers

▪ Procedures for further deep learning in 

smart manufacturing

Deep learning network process cycle
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Comments from Industry 

Collaborator
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Thank You

Questions and Comments
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